Молекулярная масса бензина


Изменение молекулярной массы нефтепродукта от температуры

⇐ Предыдущая12345678910Следующая ⇒
Температура, °С 50–100 101–150 151–200 201–250 251–300 301–350 351–400
Молекулярная масса, кг/кмоль

Из анализа таблицы 1.4 видно, что легкие фракции с равными интервалами кипения имеют примерно одинаковую молекулярную массу [59]. С повышением температуры кипения фракций увеличивается и разница в молекулярных массах, так как молекулы становятся тяжелее.

Для бензина марки Аи-80 молекулярная масса равна 110 кг/кмоль, для дизельного летнего топлива – 206 кг/кмоль.

Потери нефтепродукта происходят от испарения самых легких фракций, например пентана С5Н12. Его плотность при 20 °С равна 626 кг/м3, температура кипения плюс 36 °С, молекулярная масса 72 кг/кмоль.

Бензин состоит из различных углеводородов от пентана С5Н12, гексана С6Н14 до декана С10Н22. Пентан, гексан, декан переходят в газообразное состояние, соответственно, при температуре 36 °С, 69 °С и 180 °С. В составе бензина может быть бензол (С6Н6), толуол (С7Н8), но их температура кипения достигает 80 °С и 110 °С. При хранении, сливе, наливе потери бензина будут происходить от испарения легких фракций и в первую очередь пентана.

Для определения плотности паров нефтепродукта воспользуемся формулой Клапейрона – Менделеева, которая устанавливает связь между абсолютным давлением Р, Н/м2 (Па), абсолютной температурой Т, К, объемом V, м3, массой газа m, кг и газовой постоянной R, Дж/(кг∙К):

. (1.11)

Один кмоль паров нефтепродукта занимает объем м3. Для кмоля объемом 22,4 м3 уравнение состояния газа имеет вид:

; или .

Откуда , (1.12)

где – молекулярная масса нефтепродукта, кг/кмоль;

8314 Дж/(кмоль∙К) – универсальная газовая постоянная.

Для примерного нахождения плотности нефтепродукта, который находится в газовом состоянии, используем выражение

. (1.13)

Например, молекулярная масса метана СН4 равна 16 кг/кмоль. Если данный газ сосредоточить при атмосферных условиях в объеме 22,4 м3, то его плотность будет равна 0,714 кг/м3.

В жидкой фазе плотность метана равна 424 кг/м3. Объем метана в жидком состоянии занимает в 600 раз меньше, чем объем в газовой фазе. Это является важным фактором при транспортировке метана и использовании его в качестве топлива.

Свойства топлив и смазочных материалов условно разделяются на три группы: физико-химические, эксплуатационные и экологические.

К физико-химическим относят свойства, определяемые в лабораторных условиях, например, плотность, вязкость, испаряемость, теплота сгорания [22].

К эксплуатационнымотносят свойства, проявляемые непосредственно в двигателе, например, детонационная стойкость бензина, испаряемость, образование нагара, износостойкость деталей.

К экологическимотносят свойства, оказывающие влияние на человека и окружающую среду, например, загрязнение воздуха отработавшими газами, пожарную и взрывоопасность опасность.

Контрольные вопросы

1. Что называют плотностью, как она определяется и с какой целью?

2. Что называют удельным весом и удельным объемом?

3. Определение давления, абсолютное, избыточное (манометрическое) и вакуумметрическое давление, единицы величины.

4. Методика определения величины вакуумметрического давления.

5. Что называют давлением насыщенных паров?

6. Кинематическая и динамическая вязкость, единицы величины.

7. Дайте определение объемному и массовому расходам жидкостей или газов?

8. Сжимаемость жидкости или газа.

9. Что называют молем и киломолем?

10. Как определяется плотность жидкого нефтепродукта, находящегося в газовой фазе?

11. Что относят к физико-химическим, эксплуатационным и экологическим свойствам топлив?

⇐ Предыдущая12345678910Следующая ⇒

Дата добавления: 2015-10-12; просмотров: 682. Нарушение авторских прав

Рекомендуемые страницы:

Молекулярная масса



Молекулярная (мольная) масса - важнейшая физическая характеристика как индивидуальных веществ, так и их смесей. Молекулярную массу индивидуального вещества вычисляют по его химической формуле через атомные массы элементов, входящих в состав молекулы. Молекулярная масса показывает, во сколько раз масса молекулы данного вещества больше 1/12 части массы атома изотопа углерода 12С. Киломоль (моль) - это количество вещества, выраженное в килограммах (граммах) и равное молекуляной массе этого вещества. Когда говорится о молекулярной массе сложных смесей (например, газ, нефть, нефтяные фракции), то подразумевается их средняя молекулярная масса, она остается постоянной при изменении температуры и давления.

Молекулярную массу можно определять экспериментально; кроме того, для этого используют также приближенные расчетные методы через найденные ранее плотность и среднюю температуру кипения нефтяной фракции. Примерные значения средних молекулярных масс нефти и нефтяных фракций: нефть 210-250; бензиновая фракция 95-130; керосиновая фракция 185— 220; фракция дизельного топлива 210-240; мазутная фракция 350-400; масляные фракции 300-500; остаточные масляные фракции 400-600; гудроны более 400; смолы 700-1000; асфальтены более 2000. Для примера приводятся значения молекулярных масс углеводородных газов, которые в принципе могут несколько изменяться.

Природный газ газовых месторождений:Медвежье................................................16,33Уренгойское..............................................16,37

Газ газоконденсатного месторождения Выктульское...............19,28

Нефтяной газ газонефтяных месторождений:Коробковское.............................................21,53Туймазинское.............................................28,47

Попутный нефтяной газ нефтяного месторождения Самотлорское:

после 1-й ступени сепарации...............................20,97

после 2-й ступени сепарации................................24,01

после 3-й ступени сепарации................................32,37

Сжиженная смесь техническая пропана и бутана.................47-52Сжиженная широкая фракция легких углеводородов (ШФЛУ).....52-59

По значению молекулярной массы газа или паровой фазы нефтяной фракции можно просто вычислить плотность при нормальных условиях: при температуре 0 °С и давлении 0,1013 МПа (760 мм рт.ст.) делением молекулярной массы на 22,41. Размерность плотности газа (пара) в кг/м3 или кг/нм3, где нм3 - метр кубический для нормальных условий. При расчете процессов ректификации нефти и нефтяных фракций иногда используют дифференциальное представление непрерывного состава нефти, полученного в виде кривой ИТК. Для этого ось ординат (температура выкипания фракций) кривой ИТК произвольно разбивают на интервалы, которые идентифицируются с некоторым компонентом {узкой фракцией) или со средней температурой кипения узкой фракции. При четком делении смеси (нефти) рекомендуют принимать не менее 50 условных компонентов и при нечетком делении - 10-15 компонентов. В качестве примера в табл. 2.1 дано дифференциальное представление состава некоторой сырой нефти, а в табл. 2.2 приведены физико-химические свойства узких фракций Уренгойского нестабильного газового конденсата.

Формула бензина в химии

Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?! Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Основная отрасль применения бензинов – производство моторного топлива и сырья для органического синтеза.

Поскольку бензин – это смесь, то нельзя вывести какую-либо определенную химическую, структурную, электронную или ионную формулу бензина.

В зависимости от октанового числа различают виды бензины, например: регуляр-92, премиум-95, супер-98 и т.д. Производство бензина, а также содержание разных присадок в нем строго нормируется и должно соответствовать определенным экологическим стандартам.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Молярная масса нефтепродуктов и газов: понятие, расчет, применение

МОЛЯРНАЯ МАССА

Средняя молярная масса для нефтей и нефтепродуктов рассчитывают по эмпирическим формулам. Чаще всего для определения молярной массы нефтяной фрак­ции используют формулу Воинова:

М = а+b*tср. м. +с*t 2ср. м.

Где а, в, с - коэффициенты, зависящие от природы фракций;

tср. м-средняя молярная температура кипения фракции,

tср. =(tнк+tкк)/2

Для нефтей и нефтепродуктов неизвестного состава определение молярной массы производится по упрощенной формуле Воинова:

М = 60+0,3tср+0,001 tср^2

Зная относительную плотность нефтяной фракции, ее молярную массу можно определить по формуле Крэга: (связь р и М)

М =44,29* р15 /1.03-р1515

Средняя молярная масса нефти находится примерно в пределах 210-250[кг/к*моль]. Чем выше температура кипения нефтяных фракций, тем выше их молекулярная масса, также она зависит от химического состава фракции.

Молярная масса используется при расчете плотностей газов, молярных объемов жидких нефтепродуктов и их паров, при расчете размеров различных аппаратов и т.д.

В лабораторной практике молекулярный вес определяют криоскопическим методом, основанном на снижении температуры застывания растворителя от прибавления к нему нефтепродукта. Редко используется эбуллиоскопический метод – основан на изменении температуры кипения растворителя при прибавлении нефтепродукта.

18.Давление насыщенных паров нефтей и нефтепродуктов: понятие , расчет, определение и применение. Графики и номограммы для определения давления насыщенных паров углеводородов и нефтепродуктов.

ДАВЛЕНИЕ НАСЫЩЕННЫХ ПАРОВ

Пар, находящийся в равновесии с жидкостью, является насыщен­ным. В состоянии насыщения пары обладают наибольшим давлени­ем, возможным при данной температуре. Д.Н.П.- это давление , которое оказывает пары на стенки сосуда.

Давление насыщенных паров - важная характеристика нефтей и нефтепродуктов. По величине давления насыщенных паров судят о количестве в них растворенных газов и низкокипящих фракций и их склонности к испарению.

Знание давления насыщенных паров позволяет обеспечить безо­пасность транспорта нефти и нефтепродуктов и снизить их потери при хранении. Давление насыщенных паров обеспечивает поведение, например, бензина в двигателе.

Для определения давления насыщенных паров существуют ана­литические и графические методы. Наиболее распространенными яв­ляются график Кокса и сетка Максвелла. Они позволяют находить давление насыщенных паров фракций и углеводородов при заданной температуре, если известно давление насыщенных паров при какой-либо другой температуре.

График Кокса позволяет быстро и с достаточной для технических расчетов точностью определить давление насыщенных паров нефтепродуктов (углеводородов) при заданной температуре или по давлению насыщенных паров определить температуру кипе­ния нефтепродукта (углеводорода). Для того чтобы воспользоваться графиком Кокса, предварительно необходимо определить молярную массу искомого продукта по его средней температуре кипения и сравнить с наиболее близким по молярной массе углеводородом.

Давление насыщенных паров углеводородов также может быть рассчитано по уравнению Антуана:

Ai, Bi, Сi -константы Антуана i-го компонента.

Определение давления насыщенных паров моторных топлив проводится в герметичной стандартной металлической бомбе Рейда путем замера давления по манометру при 38 0С. Прибор для определения давления насыщенных паров состоит из металлической бомбы, манометра и водяной бани (рис. 2.3). Металлическая бомба имеет топливную и воздушную камеры, которые соединяются между собой. Отношение объема воздушной камеры к объему топливной находится в пределах 3,8 : 4,2. На верху воздушной камеры находится манометр. Водяная баня снабжена нагревательным приспособлением с терморегулятором для поддержания постоянной температуры 38±0,3 0С.

Рис. 2.3 Схема прибора для определения давления насыщенных паров нефтепродуктов:

1 – нижняя (топливная) камера; 2 – верхняя (воздушная) камера; 3 - манометр; 4- термометр;

5 – баня водяная; 6 – термостат.

19. Температура вспышки, воспламенения, самовоспламенения и пределы взрываемости газов и нефтепродуктов : понятие, методы определения в лаборатории, применение.

t вспышки- минимальная t, при которой пары нефтепродукта, нагреваемого в стандартных условиях, вспыхивают при поднесении открытого пламени. Прибор для опред. t вспышки – тигель( открытый и закрытый). Температура вспышки, определенная в закрытом тигле, всегда значительно ниже температуры вспышки того же нефтепродукта, определенной в открытом тигле. Это объясняется тем, что требуемое для вспышки количество нефтяных паров над испаряющейся в закрытом тигле жидкостью накапливается при более низкой температуре, чем в тигле открытого типа.

t вспышки относится к экологическим показателям качества;

t вспышки нормируется для нефтепродуктов, начиная с реактивного топлива (дизтопливо, масла)

Температура вспышки нефтепродуктов зависит от их фракционного состава и наличия низкокипящих компонентов. Чем легче фракция нефти, тем ниже ее температура вспышки.

Ниже представлены температуры вспышки нефти и нефтяных фракций:

бензиновые фракции – от –400С до –950С и ниже;

керосиновые фракции – +28÷+700С;

дизельные фракции - +50÷+1600С;

вакуумные газойли и масляные дистилляты - +180÷+2500С;

гудроны – выше 2500С;

нефти – от –37 до +780С.

При определении температуры вспышки фиксируют минимальную температуру, при которой смесь паров нефтепродукта с воздухом вспыхивает и сейчас же гаснет. При дальнейшем нагреве нефтепродукта и очередном поднесении пламени продукт вспыхивает и горит в течение некоторого времени.

Минимальную температуру, при которой нагреваемый в стандартных условиях нефтепродукт загорается при поднесении к нему открытого пламени и горит не менее 5с, называют температурой воспламенения. Температуры воспламенения нефтепродуктов всегда выше их температур вспышки.

Температуры самовоспламенения- минимальная тем-ра, при кот. пары нефтепродукта, нагретого в стандартных условиях, вспыхивают самопроизвольно.

Температуру самовоспламенения нефтепродуктов определяют в открытом тигле.

бензин- tсамовосп.- (4250С)

реактивное топливо- tсамовосп.- (3800С)

дизтопливо- tсамовосп.- (3600С)

Пределы взрываемости.

Различают нижний и верхний пределы взрываемости.

Нижний предел взрываемости- это такая концентрация горючего в-ва в воздухе, ниже которой взрыва не происходит, т.к. имеющийся избыток воздуха поглощает выделившуюся в исходной точке теплоту и распространение горения не происходит.

Верхний предел взрываемости- это такая концентрация горючего в-ва в воздухе, выше которой взрыва не происходит, т.к. кислорода недостаточно для поддержания процесса горения.

Наиболее взрывоопасны ацетилен, водород, которые имеют самые широкие интервалы взрываемости.




Смотрите также